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Q: What is planning?

A: Planning is any computation from

1) a model of the world’s dynamics, and 

2) a goal

to

3) a fast way of making good decisions
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Planning has been changing
to become more interactive

• Classical AI

• model is deterministic, tabular, correct, and complete
• start and goal states
• plan is a deterministic path
• sensing is unnecessary, execution is irrelevant 

• Modern issues

• stochastic models
• learned models
• incomplete state
• function approximation
• temporal abstraction

Planning is one-shot, divorced from 
acting, learning, and sensing

Planning is continual, interacts with 
acting, learning, and sensing
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RL view of planning
• Model is state-based, predictive, and stochastic

• Goal is reward

• Plan is policy / value function

• Planning is essentially DP-style backups

• Model may be continually learned

• Planning and model-free RL are alternative paths to 
the same goal

• Function approximation in value fn, policy, model

• Model may be temporally abstract
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Big questions in planning
• How does planning interact with action taking?

• What sort of models are needed for planning?

• How important is it to include partial observability?

• How important is it to include temporal abstraction?

• How can we learn such models?

• How can we elegantly include planning to subgoals?

• Planning is never complete; how can we order the 
computations efficiently and robustly?

• Does policy-gradient RL allow a better interplay of 
planning and action?
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Temporally abstract models
• Option models (option = policy + termination fn)

• Can be learned efficiently by off-policy methods

modelstate ‘next’ state at end of option

option

discounted total reward along the way

• Plug compatible with conventional 1-step models in 
Bellman equations and DP value-fn backups

• Can be constructed from general value functions
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Foreground/background  
a fundamental architectural decomposition

• Planning is inherently computation intensive, 
thus slow, incremental, incomplete

• Interaction should be fast, as fast as possible

• Some things have to be done at the speed of 
interaction (the foreground), all other things, 
including planning, should be in the background

• (if the computation can be selective)
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Foreground-background architecture

R A

⇡ Q

r : S �! R

⇡ : A⇥ S �! [0, 1]

� : S �! [0, 1]

states St 2 S , actions At 2 A, pseudo-termination time T 2 IN

V ⇡,r,�(s) = E
h
r(S1) + · · ·+ r(ST ) | S0=s,A0:k⇠⇡, T ⇠�
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var[⇢t] =
X

a2A(s)
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µ(s, a)

Random variables St, At, Rt+1, St+1, At+1, . . .
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V̂ ⇡,r,�(St) = ✓>
t �t, weights ✓ 2 Rn, features �t 2 Rn

Importance sampling ratio:

⇢t =
⇡(At|St)
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Update, on each step:
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the foreground
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Big questions in planning

• How does planning interact with action taking?

• Via the policy and/or value fn used by the foreground

• What sort of models are needed for planning?

• How important is it to include partial observability?

• How important is it to include temporal abstraction?
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Background on 
Partial observability

• The input from the world is an observation rather 
than a ‘state’

• The agent must construct its own state representation 
to use as state (agent state, belief state)

• Extensive theory of POMDPs

• Bayesian belief state

• Planning by simulating observations and state 
updates in response to them

• Computationally complex
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Foreground-background architecture
with partial observability
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Planning is in 
the background

Interaction and 
learning are in 
the foreground

State update 
is also in the 

foreground
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Agent state and its update
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• Agent state is whatever the 
agent uses as state

• in policy, value fn, model...

• may differ from env state 
and information state

• State update:

• e.g., Bayes rule, k-order 
Markov (history), PSRs, 
predictions
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Planning should be state-to-state
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• State update is in the foreground!

• Planner and model see only 
states, never observations

• We lost this with POMDPs; Why?

• Classical and MDP planning 
were always state-to-state

• Planning can always be state-to-
state in information state

• Function approximation makes 
planning in the info state a natural, 
flexible, and scalable approach
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Why partial observability should 
be separated from planning
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• Because it can be! There is just no reason 
to treat this case specially

• It’s simpler; we save one branching and 
collecting step

• In the temporally abstract case we save 
much more

• We actually have the data available to learn 
the model

• Approximation is natural and robust

⇡ Q

St+1 = u(St, At, Ot+1)

r : S �! R

⇡ : A⇥ S �! [0, 1]

� : S �! [0, 1]

states St 2 S , actions At 2 A, pseudo-termination time T 2 IN

V ⇡,r,�(s) = E
h
r(S1) + · · ·+ r(ST ) | S0=s,A0:k⇠⇡, T ⇠�

i

↵ =
↵0

var[⇢t]

var[⇢t] =
X

a2A(s)

⇡(s, a)2 � µ(s, a)2

µ(s, a)

Random variables St, At, Rt+1, St+1, At+1, . . .

Linear value-function approximation:

V̂ ⇡,r,�(St) = ✓>
t �t, weights ✓ 2 Rn, features �t 2 Rn

Importance sampling ratio:

⇢t =
⇡(At|St)

µ(At|St)

Update, on each step:

�t = r(St+1) + �(St+1)✓
>
t �t+1 � ✓>

t �t

✓t+1 = ✓t + ↵⇢t

h
�t�t � �(w>

t �t)�t+1

i

wt+1 = wt + �
�
⇢t�t �w>

t �t

�
�t, w 2 Rn

1

Monday, 29 April, 13



Conclusions

Big answers in planning
• How does planning interact with action taking?

• Via the policy and/or value fn used by the foreground

• What sort of models are needed for planning?

• option models with function approximation

• How important is it to include partial observability?

• Important in the foreground, 
not at all in planning or models

• How important is it to include temporal abstraction?

• Important in planning and models, 
not at all in the foreground

• How can we learn such models?

• By off-policy TD methods such as GTD, GQ, and HTD
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